Source code for hiphive.core.translational_constraints

"""
Functionality for enforcing translational sum rules
"""

import sympy
from scipy.sparse import coo_matrix
import numpy as np

from ..input_output.logging_tools import logger
from .utilities import SparseMatrix, BiMap
from .orbits import get_orbits


logger = logger.getChild('sum_rules')


[docs] def create_constraint_map(cs): # First we need to know the global index of a eigentensor given which # orbit it belongs to. params = [] n = 0 for orbit_index, orbit in enumerate(cs.orbits): nParams_in_orbit = len(orbit.eigentensors) params.append(list(range(n, n + nParams_in_orbit))) n += nParams_in_orbit # If we dont want the sum rules an eye matrix is created instead. if not cs.acoustic_sum_rules: row = list(range(n)) col = list(range(n)) data = [1.0]*n cs._cvs = coo_matrix((data, (row, col)), shape=(n, n)) return None M = get_translational_constraint_matrix(cs) nullspace = M.nullspace() logger.debug('Assembling solutions...') row = [] col = [] data = [] for c, vec in enumerate(nullspace): for r, _, v in vec.row_list(): row.append(r) col.append(c) data.append(np.float64(v)) # sanity check that there are orbits still present if len(nullspace) == 0: raise ValueError('There are no degrees of freedom, error!') # This is the final product, the constraint map (or constraint vectors) cs._cvs = coo_matrix((data, (row, col)), shape=(len(vec), len(nullspace))) logger.debug('{} degrees of freedom'.format(cs._cvs.shape[1])) logger.debug('Finished constructing constraint vectors')
[docs] def get_translational_constraint_matrix(cs): logger.debug('Starting constructing constraint matrices') # First we need to know the global index of a eigentensor given which # orbit it belongs to. params = [] n = 0 for orbit_index, orbit in enumerate(cs.orbits): nParams_in_orbit = len(orbit.eigentensors) params.append(list(range(n, n + nParams_in_orbit))) n += nParams_in_orbit # The lookup is a fast way to get the eigentensors given a cluster Also the # orbit index is bundled to quickly find the correct parameter indices lookup = {} for orbit_index, orbit in enumerate(cs.orbits): for of in orbit.orientation_families: for cluster_index, perm_index in zip(of.cluster_indices, of.permutation_indices): cluster = cs._cluster_list[cluster_index] perm = cs._permutations[perm_index] lookup[tuple(cluster)] = [et.transpose(perm) for et in of.eigentensors], orbit_index # Init just one row to be able to stack. n is the total number of # eigentensors M = SparseMatrix(1, n, 0) # This is the constraint matrix for order in cs.cutoffs.orders: logger.debug('Order {}: '.format(order)) # Find which minimal amount of prefixes that is needed # Essentially they are all the prototypes of order one less still # compatible with the cutoff. prefix_list = [] if order == 2: for i in np.unique(cs.wyckoff_sites): prefix_list.append((i,)) else: tmp_cluster_set = set() for cluster in cs._cluster_list: if len(cluster) != order: continue for i in range(order): c = tuple(cluster[:i]) + tuple(cluster[i+1:]) if c[0] < len(cs._prim): tmp_cluster_set.add(c) tmp_cluster_list = BiMap() for c in tmp_cluster_set: tmp_cluster_list.append(c) orbits = get_orbits(tmp_cluster_list, cs._atom_list, cs.rotation_matrices, cs.translation_vectors, cs.permutations, cs._prim, cs.symprec) for orb in orbits: prefix_list.append(tmp_cluster_list[orb.prototype_index]) m = SparseMatrix(3**order, M.shape[1], 0) # intermediate matrix # Now loop over the prefix and add the last atom index for prefix in prefix_list: m *= 0 cluster = list(prefix) + [None] for i in range(len(cs._atom_list)): cluster[-1] = i tmp = lookup.get(tuple(sorted(cluster))) if tmp is None: continue ets, orbit_index = tmp inv_argsort = np.argsort(np.argsort(cluster)) ets = [et.transpose(inv_argsort) for et in ets] for et, col in zip(ets, params[orbit_index]): et_flat = et.flatten() for j in et_flat.nonzero()[0]: m[j, col] += sympy.nsimplify(et_flat[j]) M = SparseMatrix.vstack(M, m) # only compress if there are very many elements if M.nnz() > cs._config['max_number_constraint_elements']: M = SparseMatrix.rref(M)[0] logger.debug('Finished constructing constraint matrices') logger.debug('Starting constructing constraint vectors') return M